|
|
|
%%清空环境
|
|
|
|
clc;
|
|
|
|
clear;
|
|
|
|
close all;
|
|
|
|
%% 参数设置
|
|
|
|
ChromosomeSize = 1; %染色体个数
|
|
|
|
ChromosomeLen=17; %染色体长度 由最大值决定
|
|
|
|
PopulationSize = 100; %种群规模
|
|
|
|
MaxIter = 50; %最大迭代次数
|
|
|
|
% MinFitness=0.01; %最小适应值
|
|
|
|
CrossRate=0.6; %交叉概率
|
|
|
|
MutateRate=0.1; %变异概率
|
|
|
|
% ObjFun=@PSO_PID; %适应值函数
|
|
|
|
NoChangeNo=5;
|
|
|
|
% UpLimit=30; %上限
|
|
|
|
global Kp;
|
|
|
|
global Ki;
|
|
|
|
global Kd;
|
|
|
|
%% 初始化种群init.m
|
|
|
|
Population1=rand(PopulationSize,ChromosomeLen); %种群,预分配内存
|
|
|
|
Population2=rand(PopulationSize,ChromosomeLen); %种群,预分配内存
|
|
|
|
Population3=rand(PopulationSize,ChromosomeLen); %种群,预分配内存
|
|
|
|
for i=1:PopulationSize
|
|
|
|
disp(['正在初始化种群',num2str(i)]);
|
|
|
|
for j=1:ChromosomeLen
|
|
|
|
Population1(i,j)=round(rand);
|
|
|
|
end
|
|
|
|
end
|
|
|
|
for i=1:PopulationSize
|
|
|
|
disp(['正在初始化种群',num2str(i)]);
|
|
|
|
for j=1:ChromosomeLen
|
|
|
|
Population2(i,j)=round(rand);
|
|
|
|
end
|
|
|
|
end
|
|
|
|
for i=1:PopulationSize
|
|
|
|
disp(['正在初始化种群',num2str(i)]);
|
|
|
|
for j=1:ChromosomeLen
|
|
|
|
Population3(i,j)=round(rand);
|
|
|
|
end
|
|
|
|
end
|
|
|
|
clear i;
|
|
|
|
clear j;
|
|
|
|
|
|
|
|
%% 开始循环
|
|
|
|
PopulationFitness=zeros(PopulationSize,1); %种群适应度值,预分配内存
|
|
|
|
BestFitness=zeros(MaxIter,1); %初始化每一代的最佳适应度
|
|
|
|
AveFitness=zeros(MaxIter,1); %初始化每一代的平均适应度
|
|
|
|
K_p=zeros(MaxIter,1); %初始化 用于提高运算速度
|
|
|
|
K_i=zeros(MaxIter,1); %初始化 用于提高运算速度
|
|
|
|
K_d=zeros(MaxIter,1); %初始化 用于提高运算速度
|
|
|
|
Elite1=zeros(MaxIter,1); %用于记录每一代的最优解
|
|
|
|
Elite2=zeros(MaxIter,1); %用于记录每一代的最优解
|
|
|
|
Elite3=zeros(MaxIter,1); %用于记录每一代的最优解
|
|
|
|
for Iter=1:MaxIter
|
|
|
|
disp(['迭代次数:',num2str(Iter)]); %显示迭代进度
|
|
|
|
%% 适应值计算Fitness
|
|
|
|
for i=1:PopulationSize
|
|
|
|
% PopulationFitness(i,1) = fitness(decode(Population1(i,:)));
|
|
|
|
Kp=decode(Population1(i,:));
|
|
|
|
Ki=decode(Population2(i,:));
|
|
|
|
Kd=decode(Population3(i,:));
|
|
|
|
PopulationFitness(i,1) = fitness(Kp,Ki,Kd);
|
|
|
|
end
|
|
|
|
%% 适应值大小排序,并保存最佳个体和最佳适应度
|
|
|
|
FitnessSum=sum(PopulationFitness); %种群累加适应度
|
|
|
|
AveFitness(Iter,1)=FitnessSum/PopulationSize; %种群平均适应度
|
|
|
|
[PopulationFitness,Index]=sort(PopulationFitness); %适应值从小到大排序
|
|
|
|
BestFitness(Iter,1) = PopulationFitness(PopulationSize,1); %记录每一代的最佳适应度
|
|
|
|
Elite1(Iter,1) = decode(Population1(Index(PopulationSize),:)); %记录本代的精英
|
|
|
|
Elite2(Iter,1) = decode(Population2(Index(PopulationSize),:)); %记录本代的精英
|
|
|
|
Elite3(Iter,1) = decode(Population3(Index(PopulationSize),:)); %记录本代的精英
|
|
|
|
disp(['最佳适应度:',num2str(BestFitness(Iter,1))]);
|
|
|
|
disp(['最佳个体:',num2str(Elite1(Iter,1)),' ',num2str(Elite2(Iter,1)),' ',num2str(Elite3(Iter,1))]);
|
|
|
|
%% 复制适应值最大的不变的染色体
|
|
|
|
PopulationNew1=zeros(PopulationSize,ChromosomeLen); %初始化新的种群
|
|
|
|
PopulationNew2=zeros(PopulationSize,ChromosomeLen); %初始化新的种群
|
|
|
|
PopulationNew3=zeros(PopulationSize,ChromosomeLen); %初始化新的种群
|
|
|
|
for i=1:NoChangeNo
|
|
|
|
PopulationNew1(i,:)=Population1(Index(PopulationSize-i+1),:);
|
|
|
|
PopulationNew2(i,:)=Population2(Index(PopulationSize-i+1),:);
|
|
|
|
PopulationNew3(i,:)=Population3(Index(PopulationSize-i+1),:);
|
|
|
|
end
|
|
|
|
%% 轮盘赌法 选择selection
|
|
|
|
for i=(NoChangeNo+1):2:PopulationSize
|
|
|
|
[idx1,idx2] = selection(PopulationSize,FitnessSum,PopulationFitness,Index);
|
|
|
|
%% 父母交叉形成子代
|
|
|
|
Rate=rand;
|
|
|
|
if Rate<=CrossRate
|
|
|
|
acr_position = floor(ChromosomeLen*rand+1); %交叉节点
|
|
|
|
[PopulationNew1(i,:),PopulationNew1(i+1,:)]=crossover(acr_position,Population1(idx1,:),Population1(idx2,:));
|
|
|
|
[PopulationNew2(i,:),PopulationNew2(i+1,:)]=crossover(acr_position,Population2(idx1,:),Population2(idx2,:));
|
|
|
|
[PopulationNew3(i,:),PopulationNew3(i+1,:)]=crossover(acr_position,Population3(idx1,:),Population3(idx2,:));
|
|
|
|
end
|
|
|
|
end
|
|
|
|
%% 变异
|
|
|
|
for i=(NoChangeNo+1):PopulationSize
|
|
|
|
PopulationNew1(i,:)=mutation(ChromosomeLen,MutateRate,PopulationNew1(i,:));
|
|
|
|
PopulationNew2(i,:)=mutation(ChromosomeLen,MutateRate,PopulationNew2(i,:));
|
|
|
|
PopulationNew3(i,:)=mutation(ChromosomeLen,MutateRate,PopulationNew3(i,:));
|
|
|
|
end
|
|
|
|
for i=1:PopulationSize
|
|
|
|
Population1(i,:)=PopulationNew1(i,:);
|
|
|
|
Population2(i,:)=PopulationNew2(i,:);
|
|
|
|
Population3(i,:)=PopulationNew3(i,:);
|
|
|
|
end
|
|
|
|
|
|
|
|
K_p(Iter,1)=Elite1(Iter,1);
|
|
|
|
K_i(Iter,1)=Elite2(Iter,1);
|
|
|
|
K_d(Iter,1)=Elite3(Iter,1);
|
|
|
|
end
|
|
|
|
figure(1)
|
|
|
|
plot(BestFitness,'LineWidth',2);
|
|
|
|
title('最优个体适应值','fontsize',18);
|
|
|
|
xlabel('迭代次数');ylabel('适应值');
|
|
|
|
figure(2)
|
|
|
|
plot(K_p)
|
|
|
|
hold on
|
|
|
|
plot(K_i,'k','LineWidth',3)
|
|
|
|
plot(K_d,'--r')
|
|
|
|
title('pid参数优化曲线','fontsize',18);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|